
Plasticity and 
Deformation Processes

Yielding criteria and the associated stress calculations



A state of plane stress exists at a point Q with 𝜎𝑧 = 𝜏𝑧𝑥 = 𝜏𝑧𝑦 = 0. The state of plane stress is defined by the 

stress components 𝜎𝑥 , 𝜎𝑦 , 𝜏𝑥𝑦 associated with the material shown:

If the material is rotated through an angle 𝜃 about the z axis, the stress components change to 𝜎𝑥
′, 𝜎𝑦

′, 𝜏𝑥𝑦
′

which can be expressed in terms of 𝜎𝑥 , 𝜎𝑦, 𝜏𝑥𝑦 and 𝜃



Consider a prismatic element with faces respectively 
perpendicular to the x, y and x’ axes:

If the area of the oblique face is ΔA, the areas of the vertical 
and horizontal faces are equal to ΔA cosθ, and ΔA sinθ
respectively.

The mechanical equilibrium along the x’ and y’ axes require 
that

 𝐹𝑥′ = 0, 𝜎𝑥
′Δ𝐴 − 𝜎𝑥 Δ𝐴 cos 𝜃 cos 𝜃 −

𝜏𝑥𝑦 Δ𝐴 cos 𝜃 sin 𝜃 − 𝜎𝑦 Δ𝐴 sin 𝜃 sin 𝜃 −

𝜏𝑥𝑦 Δ𝐴 sin 𝜃 cos𝜃 = 0

 𝐹𝑦′ = 0, 𝜏𝑥′𝑦′Δ𝐴 + 𝜎𝑥 Δ𝐴 cos𝜃 sin 𝜃 −

𝜏𝑥𝑦 Δ𝐴 cos 𝜃 cos 𝜃 − 𝜎𝑦 Δ𝐴 sin 𝜃 cos𝜃 +

𝜏𝑥𝑦 Δ𝐴 sin 𝜃 sin 𝜃 = 0

The first equation is solved for 𝜎𝑥
′ and the second for 𝜏𝑥′𝑦′ as

𝜎𝑥
′ = 𝜎𝑥 cos

2 𝜃 + 𝜎𝑦 sin
2 𝜃 + 2𝜏𝑥𝑦 sin 𝜃 cos 𝜃

𝜏𝑥′𝑦′ = − 𝜎𝑥 − 𝜎𝑦 sin 𝜃 cos 𝜃 + 𝜏𝑥𝑦 cos
2 𝜃 − sin2 𝜃



After simplifications using trigonometric substitutions we obtain the normal and shear stresses on the rotated 
material as

𝜎𝑥
′ =

𝜎𝑥 + 𝜎𝑦
2

+
𝜎𝑥 − 𝜎𝑦
2

cos2𝜃 + 𝜏𝑥𝑦 sin 2𝜃

𝜎𝑦
′ =

𝜎𝑥 + 𝜎𝑦
2

−
𝜎𝑥 − 𝜎𝑦
2

cos2𝜃 − 𝜏𝑥𝑦 sin 2𝜃

𝜏𝑥′𝑦′ = −
𝜎𝑥 − 𝜎𝑦
2

sin 2𝜃 + 𝜏𝑥𝑦 cos2𝜃

The expression for the normal stress 𝜎𝑦
′ is obtained by replacing θ by the angle θ+90 that the y’ axis forms with 

the x axis.

Adding the two normal stresses we see that

𝜎𝑥
′ + 𝜎𝑦

′ = 𝜎𝑥 + 𝜎𝑦

In the case of plane stress, the sum of the normal stresses exerted on a cubic material is independent of the 
orientation of the material since 𝜎𝑧 = 𝜎𝑧′ = 0



The equations obtained for the normal and shear stresses in the rotated material under plane stress condition are 
the parametric equations of a circle

If we plot a point M in the rectangular axes with the coordinates (𝜎𝑥
′, 𝜏𝑥′𝑦′) for any given value of the parameter 

θ, all the other possible points will lie on a circle.

𝜎𝑥
′ =

𝜎𝑥 + 𝜎𝑦
2

+
𝜎𝑥 − 𝜎𝑦
2

cos2𝜃 + 𝜏𝑥𝑦 sin 2𝜃

𝜏𝑥′𝑦′ = −
𝜎𝑥 − 𝜎𝑦
2

sin 2𝜃 + 𝜏𝑥𝑦 cos2𝜃

The angle θ in the equations can be eliminated by algebraic simplifications and addition of the two equations:

𝜎𝑥
′ −

𝜎𝑥 + 𝜎𝑦
2

2

+ 𝜏𝑥′𝑦′
2 =

𝜎𝑥 − 𝜎𝑦
2

2

+ 𝜏𝑥𝑦
2

Where 
𝜎𝑥+𝜎𝑦

2
= 𝜎𝑎𝑣𝑒 and 

𝜎𝑥−𝜎𝑦

2

2
+ 𝜏𝑥𝑦

2 = 𝑅2

So 𝜎𝑥
′ − 𝜎𝑎𝑣𝑒

2 + 𝜏𝑥′𝑦′
2 = 𝑅2

Which is the equation of a circle of radius R centered at the point C of 
coordinates (𝜎𝑎𝑣𝑒 , 0)



The point A where the circle intersects the horizontal axis is the maximum value of the normal stress 𝜎𝑥
′ and the 

other intersection point B is the minimum value. Both points correspond to a zero value of shear stress 𝜏𝑥′𝑦′. 

These are the principle stresses.

Since 𝜎𝑚𝑎𝑥 = 𝜎𝑎𝑣𝑒 + 𝑅 𝜎𝑚𝑖𝑛 = 𝜎𝑎𝑣𝑒 − 𝑅

𝜎𝑚𝑎𝑥,𝑚𝑖𝑛 =
𝜎𝑥 + 𝜎𝑦
2

±
𝜎𝑥 − 𝜎𝑦
2

2

+ 𝜏𝑥𝑦
2

The rotation angles that produce the principal stresses with no shear stress is obtained from the equation of 
shear stress

𝜏𝑥′𝑦′ = −
𝜎𝑥 − 𝜎𝑦
2

sin 2𝜃 + 𝜏𝑥𝑦 cos 2𝜃 = 0

tan 2𝜃𝑝 =
2𝜏𝑥𝑦
𝜎𝑥 − 𝜎𝑦

This equation gives two 𝜃𝑝 values that are 90 apart. Either of them can be 

used to determine the orientation of the corresponding rotated plane. 
These planes are the principal planes of stress at point Q



The points D and E are located on the vertical diameter of the circle 
corresponding to the largest numerical value of the shear stress 𝜏𝑥′𝑦′. 

These points have the same normal stresses of 𝜎𝑎𝑣𝑒. So the rotation that 
produces the maximum shear stresses can be obtained from the normal 
stress equations.

𝜎𝑥
′ = 𝜎𝑎𝑣𝑒 =

𝜎𝑥 + 𝜎𝑦
2

+
𝜎𝑥 − 𝜎𝑦
2

cos2𝜃 + 𝜏𝑥𝑦 sin 2𝜃 =
𝜎𝑥 + 𝜎𝑦
2

tan 2𝜃𝑠 = −
𝜎𝑥 − 𝜎𝑦
2𝜏𝑥𝑦

This equation gives two 𝜃𝑠 values that are 90 apart. Either of them can 
be used to determine the orientation of corresponding rotated plane 
that produces the maximum shear stress which is equal to

𝜏𝑚𝑎𝑥 = 𝑅 =
𝜎𝑥 − 𝜎𝑦
2

2

+ 𝜏𝑥𝑦
2



The normal stress corresponding to the condition of maximum shear stress is 

𝜎𝑥
′ = 𝜎𝑎𝑣𝑒 =

𝜎𝑥 + 𝜎𝑦
2

Also 

tan 2𝜃𝑠 = −
𝜎𝑥 − 𝜎𝑦
2𝜏𝑥𝑦

= − tan2𝜃𝑝
−1
= −

2𝜏𝑥𝑦
𝜎𝑥 − 𝜎𝑦

−1

This means that the angles 𝜃𝑠 and 𝜃𝑝 are 45 apart

So the planes of maximum shear stress are oriented at 45 to the principal planes

Example – Determine the principal planes, principle stresses, maximum shear stress and the corresponding 
normal stress for the state of plane stress shown



Yield criteria for ductile materials under plane stress

When a ductile material is under uniaxial stress, the value of the normal stress 𝜎𝑥 which will cause the material to 
yield can be determined simply from a stress-strain diagram obtained by a tensile test.

The material will deform plastically when 𝜎𝑥 > 𝜎𝑌𝑖𝑒𝑙𝑑

On the other hand when a material is in a state of multiaxial stress, the material will yield when the maximum 
value of the shear stress exceeds the corresponding value of the shear stress in a tensile-test specimen as it starts 
to yield.

Maximum shear stress criterion is based on the observation that yield in ductile materials is caused by slippage of 
the material along oblique surfaces and is due primarily to shear stresses.

In the plane stress condition the material can be represented as a point under principal stresses 𝜎𝑎 , 𝜎𝑏



Recall that the maximum value of shear stress at a point under a centric axial load is equal to half the value of the 
corresponding normal axial stress.

Thus at yielding

𝜏𝑚𝑎𝑥 =
1

2
𝜎𝑌

Also for plane stress condition if the principle stresses are both positive or both negative, the maximum value of 

the shear stress is equal to 
1

2
𝜎𝑚𝑎𝑥

Therefore 𝜎𝑎 > 𝜎𝑌 or 𝜎𝑏 > 𝜎𝑌

If the maximum stress is positive and  the minimum stress negative, the maximum value of the shear stress is 

equal to 
1

2
( 𝜎𝑚𝑎𝑥 − 𝜎𝑚𝑖𝑛 )

Therefore ( 𝜎𝑎 − 𝜎𝑏 ) > 𝜎𝑌

These relations produce a hexagon in the xy plane, called Tresca’s hexagon. Any given state of stress will be 
represented in the figure by a point.



Maximum distortion energy criterion is based on the determination of the distortion energy in a given material, 
which is the energy consumed by a change in the shape of the material.

Also called von Mises criterion, it states that a material will yield when the maximum value of the distortion 
energy per unit volume exceeds the distortion energy per unit volume required to cause yield in a tensile test 
specimen.

The distortion energy in an isotropic material under plane stress is

𝑈𝑑 =
1

6𝐺
𝜎𝑎
2 − 𝜎𝑎𝜎𝑏 + 𝜎𝑏

2

In the case of a tensile test specimen yielding at 𝜎𝑌

𝑈𝑌 =
1

6𝐺
𝜎𝑌
2

Thus the maximum distortion energy criterion indicates that the material yields when 𝑈𝑑 > 𝑈𝑌:

𝜎𝑎
2 − 𝜎𝑎𝜎𝑏 + 𝜎𝑏

2 > 𝜎𝑌
2

This equation produces an ellipse in the principal stress plane



The von Mises yield criterion is given by 

𝜎1 − 𝜎2
2 + 𝜎2 − 𝜎3

2 + 𝜎3 − 𝜎1
2 = 2𝜎𝑦

Or

𝜎𝑥 − 𝜎𝑦
2
+ 𝜎𝑦 − 𝜎𝑧

2
+ 𝜎𝑧 − 𝜎𝑥

2 + 6 𝜏𝑦𝑧
2 + 𝜏𝑧𝑥

2 + 𝜏𝑥𝑦
2 = 2𝜎𝑦

In terms of effective stress the criterion is

𝜎𝑒𝑓𝑓 =
1

2
𝜎1 − 𝜎2

2 + 𝜎2 − 𝜎3
2 + 𝜎3 − 𝜎1

2 = 𝜎𝑦

𝜎𝑒𝑓𝑓 =
2

2
𝜎𝑥 − 𝜎𝑦

2
+ 𝜎𝑦 − 𝜎𝑧

2
+ 𝜎𝑧 − 𝜎𝑥

2 + 6 𝜏𝑦𝑧
2 + 𝜏𝑧𝑥

2 + 𝜏𝑥𝑦
2 = 𝜎𝑦

For plane states of stress, the yield condition is the interaction of the cylinder with the principal stress plane, 
which is a yield ellipse



The von Mises yield criterion is visualized as a circular cylinder in the stress space

The axis of the cylinder passes through the origin of the coordinates for unyielded material

It is inclined equal amount to the three axes and represents pure hydrostatic stress for elastic deformations.



The effective stress is the uniaxial stress that is equally distant from the yield surface or located on it

The effective stress or the stress intensity for an elastic material is expressed as

𝜎𝑒𝑓𝑓 =
2

2
𝜎𝑥 − 𝜎𝑦

2
+ 𝜎𝑦 − 𝜎𝑧

2
+ 𝜎𝑧 − 𝜎𝑥

2 + 6 𝜏𝑦𝑧
2 + 𝜏𝑧𝑥

2 + 𝜏𝑥𝑦
2

And the effective strain as

𝜀𝑒𝑓𝑓 =
2

2 1 + 𝜈
𝜀𝑥 − 𝜀𝑦

2
+ 𝜀𝑦 − 𝜀𝑧

2
+ 𝜀𝑧 − 𝜀𝑥

2 +
3

2
𝛾𝑦𝑧

2 + 𝛾𝑧𝑥
2 + 𝛾𝑥𝑦

2

And 𝜎𝑒𝑓𝑓 = 𝐸𝜀𝑒𝑓𝑓



Yield criteria for deformation of metals under plane stress

The data for the mild steel and Cr-V steel which behave in a ductile manner agree well with the octahedral shear 
stress (von Mises) criterion

Data for cast iron which behaves in a brittle manner, agrees better with the maximum principal stress criterion:
𝜎1 = 𝜎𝑦



Brittle materials fail suddenly in a tensile test by rupture without any prior yielding.

When a brittle material is under uniaxial tensile stress, the value of the normal stress which causes it to fail is 
equal to the ultimate strength of the material as determined from a tensile test.

When a brittle material is under plane stress, the principal stresses are compared to the ultimate strength 
obtained from the uniaxial tensile test.

Maximum principal stress criterion states that a brittle material will fail when the maximum normal stress exceeds 
the ultimate strength obtained from the uniaxial tensile test:

𝜎𝑎 > 𝜎𝑈 or 𝜎𝑏 > 𝜎𝑈

This criterion forms a square area centered on the xy plane. The criterion is based on the assumption that the 
ultimate strength of materials under tension and compression are equal, which is an overestimation for most 
materials as the presence of cracks and flaws often weaken the material under tension



Example – Evaluate the yielding stress condition for a ductile cast iron using maximum shear stress, maximum 
principal stress and maximum distortion energy criteria.

𝜎𝑎 > 𝜎𝑌 or       𝜎𝑏 > 𝜎𝑌 or      ( 𝜎𝑎 − 𝜎𝑏 ) > 𝜎𝑌
𝜎𝑎 > 𝜎𝑈 or 𝜎𝑏 > 𝜎𝑈
𝜎𝑎

2 − 𝜎𝑎𝜎𝑏 + 𝜎𝑏
2 > 𝜎𝑌

2



Prediction of yielding under multiaxial loading according to the maximum shear stress criterion involves the 
analysis of the octahedral planes

There are eight octahedral planes making equal angles with the principal 
stress directions
The shearing stress on these planes is given by

𝜏𝑜𝑐𝑡 =
1

3
𝜎1 − 𝜎2

2 + 𝜎2 − 𝜎3
2 + 𝜎3 − 𝜎1

2

Or with nonprinciple stresses:

𝜏𝑜𝑐𝑡 =
1

3
𝜎𝑥 − 𝜎𝑦

2
+ 𝜎𝑦 − 𝜎𝑧

2
+ 𝜎𝑧 − 𝜎𝑥

2 + 6 𝜏𝑦𝑧
2 + 𝜏𝑧𝑥

2 + 𝜏𝑥𝑦
2

The shear strain acting on an octahedral plane is given by

𝛾𝑜𝑐𝑡 =
2

3
𝜀1 − 𝜀2

2 + 𝜀2 − 𝜀3
2 + 𝜀3 − 𝜀1

2

Or

𝛾𝑜𝑐𝑡 =
2

3
𝜀𝑥 − 𝜀𝑦

2
+ 𝜀𝑦 − 𝜀𝑧

2
+ 𝜀𝑧 − 𝜀𝑥

2 +
3

2
𝛾𝑦𝑧

2 + 𝛾𝑧𝑥
2 + 𝛾𝑥𝑦

2



Materials behave elastically until the deforming force increases beyond the yield stress. At that point, the material 
is irreversibly and permenantly deformed. 

Irreversible deformation at normal temperatures cause the dislocations to accumulate, interact with one another, 
and serve as pinning points or obstacles that significantly impede their motion. This leads to an increase in the 
yield strength of the material and a subsequent decrease in ductility.

Its extent is dependent on the material and the dislocation density

Because dislocation motion is hindered, plastic deformation cannot occur at normal stresses. The yield stress 
increases as a result.
At a stress lower than the yield stress, a cold-worked material will continue to deform using the only mechanism 
available: elastic deformation and the modulus of elasticity is unchanged. With increasing stress the strain-field 
interactions are overcome and plastic deformation resumes. It has now become a brittle material. If dislocation 
motion and plastic deformation have been hindered enough by dislocation accumulation, and stretching of 
electronic bonds and elastic deformation have reached their limit, a third mode of deformation occurs: fracture.



Increase in the number of dislocations is a quantification of work hardening. Plastic deformation occurs as a 
consequence of work being done on and energy added to a material. In addition, the energy is almost always 
applied fast enough and in large enough magnitude to not only move existing dislocations, but also to produce a 
great number of new dislocations.

∆𝜏 = 𝐺𝑏𝜌1/2

Work hardening has a half root dependency on the number of dislocations. The material exhibits high strength if 
there are either high levels of dislocations (greater than 1014 dislocations per m2) or no dislocations. A moderate 
number of dislocations (between 107 and 109 dislocations per m2) typically results in low strength

Work hardening phenomenon is formulated as a power law relationship between the stress and the amount of 
plastic strain:

𝜎 = 𝐾𝜖𝑝
𝑛 or      𝜎 = 𝜎𝑦 + 𝐾𝜖𝑝

𝑛

where σ is the stress, σy is the yield stress, K is the strength index or strength coefficient, εp is the plastic strain and 
n is the strain hardening exponent. 

https://en.wikipedia.org/wiki/File:Work_HArd.png
https://en.wikipedia.org/wiki/File:Work_HArd.png


Elastoplastic material is a model for easily plastically deformed materials that simplifies the calculations 
significantly
In reality all materials harden to an extent and mostly non-linearly without a definite hardening modulus

Calculation of the plastic deformations similarly to elastic deformations using Hooke’s law is only possible by using 
a dynamic modulus which is a definite function of applied strain

Deformation theory helps us do that once we determine the yielding condition and the effective stress state


